Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Genet Sel Evol ; 56(1): 31, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684971

ABSTRACT

BACKGROUND: Metabolic disturbances adversely impact productive and reproductive performance of dairy cattle due to changes in endocrine status and immune function, which increase the risk of disease. This may occur in the post-partum phase, but also throughout lactation, with sub-clinical symptoms. Recently, increased attention has been directed towards improved health and resilience in dairy cattle, and genomic selection (GS) could be a helpful tool for selecting animals that are more resilient to metabolic disturbances throughout lactation. Hence, we evaluated the genomic prediction of serum biomarkers levels for metabolic distress in 1353 Holsteins genotyped with the 100K single nucleotide polymorphism (SNP) chip assay. The GS was evaluated using parametric models best linear unbiased prediction (GBLUP), Bayesian B (BayesB), elastic net (ENET), and nonparametric models, gradient boosting machine (GBM) and stacking ensemble (Stack), which combines ENET and GBM approaches. RESULTS: The results show that the Stack approach outperformed other methods with a relative difference (RD), calculated as an increment in prediction accuracy, of approximately 18.0% compared to GBLUP, 12.6% compared to BayesB, 8.7% compared to ENET, and 4.4% compared to GBM. The highest RD in prediction accuracy between other models with respect to GBLUP was observed for haptoglobin (hapto) from 17.7% for BayesB to 41.2% for Stack; for Zn from 9.8% (BayesB) to 29.3% (Stack); for ceruloplasmin (CuCp) from 9.3% (BayesB) to 27.9% (Stack); for ferric reducing antioxidant power (FRAP) from 8.0% (BayesB) to 40.0% (Stack); and for total protein (PROTt) from 5.7% (BayesB) to 22.9% (Stack). Using a subset of top SNPs (1.5k) selected from the GBM approach improved the accuracy for GBLUP from 1.8 to 76.5%. However, for the other models reductions in prediction accuracy of 4.8% for ENET (average of 10 traits), 5.9% for GBM (average of 21 traits), and 6.6% for Stack (average of 16 traits) were observed. CONCLUSIONS: Our results indicate that the Stack approach was more accurate in predicting metabolic disturbances than GBLUP, BayesB, ENET, and GBM and seemed to be competitive for predicting complex phenotypes with various degrees of mode of inheritance, i.e. additive and non-additive effects. Selecting markers based on GBM improved accuracy of GBLUP.


Subject(s)
Biomarkers , Models, Genetic , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Biomarkers/blood , Cattle Diseases/genetics , Cattle Diseases/blood , Bayes Theorem , Female , Metabolic Diseases/genetics , Metabolic Diseases/veterinary , Metabolic Diseases/blood , Genomics/methods
2.
J Dairy Sci ; 107(1): 593-606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690723

ABSTRACT

Udder health has a crucial role in sustainable milk production, and various reports have pointed out that changes in udder condition seem to affect milk mineral content. The somatic cell count (SCC) is the most recognized indicator for the determination of udder health status. Recently, a new parameter, the differential somatic cell count (DSCC), has been proposed for a more detailed evaluation of intramammary infection patterns. Specifically, the DSCC is the combined proportions of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) on the total SCC, with macrophages (MAC) representing the remainder proportion. In this study, we evaluated the association between DSCC in combination with SCC on a detailed milk mineral profile in 1,013 Holstein-Friesian cows reared in 5 herds. An inductively coupled plasma-optical emission spectrometry was used to quantify 32 milk mineral elements. Two different linear mixed models were fitted to explore the associations between the milk mineral elements and first, the DSCC combined with SCC, and second, DSCC expressed as the PMN-LYM and MAC counts, obtained by multiplying the proportion of PMN-LYM and MAC by SCC. We observed a significant positive association between SCC and milk Na, S, and Fe levels. Differential somatic cell count showed an opposite behavior to the one displayed by SCC, with a negative association with Na and positive association with K milk concentrations. When considering DSCC as count, Na and K showed contrasting behavior when associated with PMN-LYM or MAC counts, with decreasing of Na content and increasing K when associated with increasing PMN-LYM counts, and increasing Na and decreasing K when associated with increasing MAC count. These findings confirmed that an increase in SCC is associated with altered milk Na and K amounts. Moreover, MAC count seemed to mirror SCC patterns, with the worsening of inflammation. Differently, PMN-LYM count exhibited patterns of associations with milk Na and K contents attributable more to LYM than PMN, given the nonpathological condition of the majority of the investigated population. An interesting association was observed for milk S content, which increased with increasing of inflammatory conditions (i.e., increased SCC and MAC count) probably attributable to its relationship with milk proteins, especially whey proteins. Moreover, milk Fe content showed positive associations with the PMN-LYM population, highlighting its role in immune regulation during inflammation. Further studies including individuals with clinical condition are needed to achieve a comprehensive view of milk mineral behavior during udder health impairment.


Subject(s)
Mammary Glands, Human , Mastitis, Bovine , Humans , Animals , Female , Cattle , Cell Count/veterinary , Cell Count/methods , Inflammation/veterinary , Mammary Glands, Animal/pathology , Minerals , Demography
3.
J Agric Food Chem ; 71(44): 16827-16839, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890871

ABSTRACT

Early detection of bovine subclinical mastitis may improve treatment strategies and reduce the use of antibiotics. Herein, individual milk samples from Holstein cows affected by subclinical mastitis induced by S. agalactiae and Prototheca spp. were analyzed by untargeted and targeted mass spectrometry approaches to assess changes in their peptidome profiles and identify new potential biomarkers of the pathological condition. Results showed a higher amount of peptides in milk positive on the bacteriological examination when compared with the negative control. However, the different pathogens seemed not to trigger specific effects on the milk peptidome. The peptides that best distinguish positive from negative samples are mainly derived from the most abundant milk proteins, especially from ß- and αs1-casein, but also include the antimicrobial peptide casecidin 17. These results provide new insights into the physiopathology of mastitis. Upon further validation, the panel of potential discriminant peptides could help the development of new diagnostic and therapeutic tools.


Subject(s)
Mastitis, Bovine , Prototheca , Cattle , Animals , Female , Humans , Streptococcus agalactiae , Mastitis, Bovine/diagnosis , Caseins , Antimicrobial Peptides
4.
J Anim Sci Biotechnol ; 14(1): 93, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37403140

ABSTRACT

BACKGROUND: Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows' health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection. RESULTS: A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Prototheca's infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality parameters (r2 = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cytohubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play a key role in regulating the animals' response to subclinical IMI. CONCLUSIONS: Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach might be included in screening and diagnostic tools for subclinical IMI detection.

5.
J Dairy Sci ; 106(9): 6577-6591, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37479573

ABSTRACT

The causes of variation in the milk mineral profile of dairy cattle during the first phase of lactation were studied under the hypothesis that the milk mineral profile partially reflects the animals' metabolic status. Correlations between the minerals and the main milk constituents (i.e., protein, fat, and lactose percentages), and their associations with the cows' metabolic status indicators were explored. The metabolic status indicators (MET) that we used were blood energy-protein metabolites [nonesterified fatty acids, ß-hydroxybutyrate (BHB), glucose, cholesterol, creatinine, and urea], and liver ultrasound measurements (predicted triacylglycerol liver content, portal vein area, portal vein diameter and liver depth). Milk and blood samples, and ultrasound measurements were taken from 295 Holstein cows belonging to 2 herds and in the first 120 d in milk (DIM). Milk mineral contents were determined by ICP-OES; these were considered the response variable and analyzed through a mixed model which included DIM, parity, milk yield, and MET as fixed effects, and the herd/date as a random effect. The MET traits were divided in tertiles. The results showed that milk protein was positively associated with body condition score (BCS) and glucose, and negatively associated with BHB blood content; milk fat was positively associated with BHB content; milk lactose was positively associated with BCS; and Ca, P, K and S were the minerals with the greatest number of associations with the cows' energy indicators, particularly BCS, predicted triacylglycerol liver content, glucose, BHB and urea. We conclude that the protein, fat, lactose, and mineral contents of milk partially reflect the metabolic adaptation of cows during lactation and within 120 DIM. Variations in the milk mineral profile were consistent with changes in the major milk constituents and the metabolic status of cows.


Subject(s)
Lactose , Milk , Female , Pregnancy , Cattle , Animals , Lactation , 3-Hydroxybutyric Acid , Glucose , Minerals
7.
J Dairy Sci ; 106(5): 3321-3344, 2023 May.
Article in English | MEDLINE | ID: mdl-37028959

ABSTRACT

The adoption of preventive management decisions is crucial to dealing with metabolic impairments in dairy cattle. Various serum metabolites are known to be useful indicators of the health status of cows. In this study, we used milk Fourier-transform mid-infrared (FTIR) spectra and various machine learning (ML) algorithms to develop prediction equations for a panel of 29 blood metabolites, including those related to energy metabolism, liver function/hepatic damage, oxidative stress, inflammation/innate immunity, and minerals. For most traits, the data set comprised observations from 1,204 Holstein-Friesian dairy cows belonging to 5 herds. An exception was represented by ß-hydroxybutyrate prediction, which contained observations from 2,701 multibreed cows pertaining to 33 herds. The best predictive model was developed using an automatic ML algorithm that tested various methods, including elastic net, distributed random forest, gradient boosting machine, artificial neural network, and stacking ensemble. These ML predictions were compared with partial least squares regression, the most commonly used method for FTIR prediction of blood traits. Performance of each model was evaluated using 2 cross-validation (CV) scenarios: 5-fold random (CVr) and herd-out (CVh). We also tested the best model's ability to classify values precisely in the 2 extreme tails, namely, the 25th (Q25) and 75th (Q75) percentiles (true-positive prediction scenario). Compared with partial least squares regression, ML algorithms achieved more accurate performance. Specifically, elastic net increased the R2 value from 5% to 75% for CVr and 2% to 139% for CVh, whereas the stacking ensemble increased the R2 value from 4% to 70% for CVr and 4% to 150% for CVh. Considering the best model, with the CVr scenario, good prediction accuracies were obtained for glucose (R2 = 0.81), urea (R2 = 0.73), albumin (R2 = 0.75), total reactive oxygen metabolites (R2 = 0.79), total thiol groups (R2 = 0.76), ceruloplasmin (R2 = 0.74), total proteins (R2 = 0.81), globulins (R2 = 0.87), and Na (R2 = 0.72). Good prediction accuracy in classifying extreme values was achieved for glucose (Q25 = 70.8%, Q75 = 69.9%), albumin (Q25 = 72.3%), total reactive oxygen metabolites (Q25 = 75.1%, Q75 = 74%), thiol groups (Q75 = 70.4%), total proteins (Q25 = 72.4%, Q75 = 77.2.%), globulins (Q25 = 74.8%, Q75 = 81.5%), and haptoglobin (Q75 = 74.4%). In conclusion, our study shows that FTIR spectra can be used to predict blood metabolites with relatively good accuracy, depending on trait, and are a promising tool for large-scale monitoring.


Subject(s)
Lactation , Milk , Female , Cattle , Animals , Milk/metabolism , Glucose/metabolism , Machine Learning , Metabolome , Spectroscopy, Fourier Transform Infrared/veterinary , Spectroscopy, Fourier Transform Infrared/methods , Spectrophotometry, Infrared/veterinary
8.
Genet Sel Evol ; 55(1): 23, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013482

ABSTRACT

BACKGROUND: Blood metabolic profiles can be used to assess metabolic disorders and to evaluate the health status of dairy cows. Given that these analyses are time-consuming, expensive, and stressful for the cows, there has been increased interest in Fourier transform infrared (FTIR) spectroscopy of milk samples as a rapid, cost-effective alternative for predicting metabolic disturbances. The integration of FTIR data with other layers of information such as genomic and on-farm data (days in milk (DIM) and parity) has been proposed to further enhance the predictive ability of statistical methods. Here, we developed a phenotype prediction approach for a panel of blood metabolites based on a combination of milk FTIR data, on-farm data, and genomic information recorded on 1150 Holstein cows, using BayesB and gradient boosting machine (GBM) models, with tenfold, batch-out and herd-out cross-validation (CV) scenarios. RESULTS: The predictive ability of these approaches was measured by the coefficient of determination (R2). The results show that, compared to the model that includes only FTIR data, integration of both on-farm (DIM and parity) and genomic information with FTIR data improves the R2 for blood metabolites across the three CV scenarios, especially with the herd-out CV: R2 values ranged from 5.9 to 17.8% for BayesB, from 8.2 to 16.9% for GBM with the tenfold random CV, from 3.8 to 13.5% for BayesB and from 8.6 to 17.5% for GBM with the batch-out CV, and from 8.4 to 23.0% for BayesB and from 8.1 to 23.8% for GBM with the herd-out CV. Overall, with the model that includes the three sources of data, GBM was more accurate than BayesB with accuracies across the CV scenarios increasing by 7.1% for energy-related metabolites, 10.7% for liver function/hepatic damage, 9.6% for oxidative stress, 6.1% for inflammation/innate immunity, and 11.4% for mineral indicators. CONCLUSIONS: Our results show that, compared to using only milk FTIR data, a model integrating milk FTIR spectra with on-farm and genomic information improves the prediction of blood metabolic traits in Holstein cattle and that GBM is more accurate in predicting blood metabolites than BayesB, especially for the batch-out CV and herd-out CV scenarios.


Subject(s)
Metabolic Diseases , Milk , Pregnancy , Female , Cattle/genetics , Animals , Milk/metabolism , Lactation , Farms , Genomics , Metabolic Diseases/metabolism
9.
Animals (Basel) ; 12(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35565628

ABSTRACT

Dairy cows have high incidences of metabolic disturbances, which often lead to disease, having a subsequent significant impact on productivity and reproductive performance. As the milk fatty acid (FA) profile represents a fingerprint of the cow's nutritional and metabolic status, it could be a suitable indicator of metabolic status at the cow level. In this study, we obtained milk FA profile and a set of metabolic indicators (body condition score, ultrasound liver measurements, and 29 hematochemical parameters) from 297 Holstein-Friesian cows. First, we applied a multivariate factor analysis to detect latent structure among the milk FAs. We then explored the associations between these new synthetic variables and the morphometric, ultrasonographic and hematic indicators of immune and metabolic status. Significant associations were exhibited by the odd-chain FAs, which were inversely associated with ß-hydroxybutyrate and ceruloplasmin, and positively associated with glucose, albumin, and γ-glutamyl transferase. Short-chain FAs were inversely related to predicted triacylglycerol liver content. Rumen biohydrogenation intermediates were associated with glucose, cholesterol, and albumin. These results offer new insights into the potential use of milk FAs as indicators of variations in energy and nutritional metabolism in early lactating dairy cows.

10.
Sci Rep ; 12(1): 8058, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577915

ABSTRACT

Precision livestock farming technologies are used to monitor animal health and welfare parameters continuously and in real time in order to optimize nutrition and productivity and to detect health issues at an early stage. The possibility of predicting blood metabolites from milk samples obtained during routine milking by means of infrared spectroscopy has become increasingly attractive. We developed, for the first time, prediction equations for a set of blood metabolites using diverse machine learning methods and milk near-infrared spectra collected by the AfiLab instrument. Our dataset was obtained from 385 Holstein Friesian dairy cows. Stacking ensemble and multi-layer feedforward artificial neural network outperformed the other machine learning methods tested, with a reduction in the root mean square error of between 3 and 6% in most blood parameters. We obtained moderate correlations (r) between the observed and predicted phenotypes for γ-glutamyl transferase (r = 0.58), alkaline phosphatase (0.54), haptoglobin (0.66), globulins (0.61), total reactive oxygen metabolites (0.60) and thiol groups (0.57). The AfiLab instrument has strong potential but may not yet be ready to predict the metabolic stress of dairy cows in practice. Further research is needed to find out methods that allow an improvement in accuracy of prediction equations.


Subject(s)
Cattle/blood , Lactation , Machine Learning , Milk/chemistry , Spectroscopy, Near-Infrared/veterinary , Animal Welfare , Animals , Cattle/metabolism , Cattle/physiology , Female , Metabolome , Milk/enzymology , Neural Networks, Computer
11.
J Dairy Sci ; 105(5): 4237-4255, 2022 May.
Article in English | MEDLINE | ID: mdl-35282909

ABSTRACT

Cheese-making traits in dairy cattle are important to the dairy industry but are difficult to measure at the individual level because there are limitations on collecting phenotypic information. Mid-infrared spectroscopy has its advantages, but it can only be used during monthly milk recordings. Recently, in-line devices for real-time analysis of milk quality have been developed. The AfiLab recording system (Afimilk) offers significant benefits as phenotypes can be collected from each cow at each milking session. The objective of this study was to assess the potential of integrating AfiLab real-time milk analyzer measures with the stacking ensemble learning technique using heterogeneous base learners for the in-line daily monitoring of cheese-making traits in Holstein cattle with a view to developing a precision livestock farming system for monitoring the technological quality of milk. Data and samples for wet-laboratory analyses were collected from 499 Holstein cows belonging to 2 farms where the AfiLab system was installed. The traits of concern were 9 milk coagulation traits [3 milk coagulation properties (MCP), and 6 curd firming traits (CFt)], and 7 cheese-making traits [3 cheese yield (CY) traits, and 4 milk nutrient recovery in the curd (REC) traits]. The near-infrared AfiLab spectral data and on-farm information (days in milk and parity) were used to assess the predictive ability of different statistical methods [elastic net (EN), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), and artificial neural network (ANN)] across different cross-validation scenarios. These statistical methods were considered the base learners, which were then combined in a stacking ensemble learning. Results indicate that including information on the cows (days in milk and parity) in the AfiLab infrared prediction increased its accuracy by 10.3% for traditional MCP, 13.8% for curd firming, 9.8% for CY, and 11.2% for REC traits compared with those obtained from near-infrared AfiLab alone. The statistical approaches exhibited high prediction accuracies (R2) averaged across the cross-validation scenarios for traditional MCP (0.58 for ANN, 0.55 for EN and GBM, 0.52 for XGBoost, and 0.62 for stacking ensemble), CFt (0.55 for ANN, 0.54 for EN and GBM, 0.53 for XGBoost, and 0.61 for stacking ensemble), and similar R2 averages for CY and REC (0.55 for ANN, 0.54 for EN and GBM, 0.53 for XGBoost, and 0.61 for stacking ensemble). The ANN approach was more accurate than the other base learners (EN, GBM, and XGBoost) and improved accuracy across cross-validation scenarios on average by 7% for traditional MCP, 5% for CFt, 8% for CY, and 7% for REC. The stacking ensemble method improved prediction accuracy by 3% to 31% for traditional MCP, 2% to 26% for CFt, 1% to 38% for CY traits, and 2% to 27% for REC traits compared with the base learners. The prediction accuracies of the different approaches evaluated tended to decrease from the 10-fold cross-validation to the independent validation scenario, although there was a smaller reduction in prediction accuracy with the stacking ensemble learning technique across all the cross-validation scenarios. Our results show that combining in-line on-farm information with stacking ensemble machine learning represents an effective alternative for obtaining robust daily predictions of milk cheese-making traits.


Subject(s)
Cheese , Animals , Cattle , Cheese/analysis , Dairying , Female , Machine Learning , Milk/chemistry , Phenotype , Pregnancy
12.
Animals (Basel) ; 13(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36611613

ABSTRACT

BACKGROUND: Mild equine asthma (MEA) and severe equine asthma (SEA) are two of the most frequent equine airway inflammatory diseases, but knowledge about their pathogenesis is limited. The goal of this study was to investigate gene expression differences in the respiratory tract of MEA- and SEA-affected horses and their relationship with clinical signs. METHODS: Clinical examination and endoscopy were performed in 8 SEA- and 10 MEA-affected horses and 7 healthy controls. Cytological and microbiological analyses of bronchoalveolar lavage (BAL) fluid were performed. Gene expression profiling of BAL fluid was performed by means of a custom oligo-DNA microarray. RESULTS: In both MEA and SEA, genes involved in the genesis, length, and motility of respiratory epithelium cilia were downregulated. In MEA, a significant overexpression for genes encoding inflammatory mediators was observed. In SEA, transcripts involved in bronchoconstriction, apoptosis, and hypoxia pathways were significantly upregulated, while genes involved in the formation of the protective muco-protein film were underexpressed. The SEA group also showed enrichment of gene networks activated during human asthma. CONCLUSIONS: The present study provides new insight into equine asthma pathogenesis, representing the first step in transcriptomic analysis to improve diagnostic and therapeutic approaches for this respiratory disease.

13.
Animals (Basel) ; 11(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34359121

ABSTRACT

In general, Fourier-transform infrared (FTIR) predictions are developed using a single-breed population split into a training and a validation set. However, using populations formed of different breeds is an attractive way to design cross-validation scenarios aimed at increasing prediction for difficult-to-measure traits in the dairy industry. This study aimed to evaluate the potential of FTIR prediction using training set combining specialized and dual-purpose dairy breeds to predict different phenotypes divergent in terms of biological meaning, variability, and heritability, such as body condition score (BCS), serum ß-hydroxybutyrate (BHB), and kappa casein (k-CN) in the major cattle breed, i.e., Holstein-Friesian. Data were obtained from specialized dairy breeds: Holstein (468 cows) and Brown Swiss (657 cows), and dual-purpose breeds: Simmental (157 cows), Alpine Grey (75 cows), and Rendena (104 cows), giving a total of 1461 cows from 41 multi-breed dairy herds. The FTIR prediction model was developed using a gradient boosting machine (GBM), and predictive ability for the target phenotype in Holstein cows was assessed using different cross-validation (CV) strategies: a within-breed scenario using 10-fold cross-validation, for which the Holstein population was randomly split into 10 folds, one for validation and the remaining nine for training (10-fold_HO); an across-breed scenario (BS_HO) where the Brown Swiss cows were used as the training set and the Holstein cows as the validation set; a specialized multi-breed scenario (BS+HO_10-fold), where the entire Brown Swiss and Holstein populations were combined then split into 10 folds, and a multi-breed scenario (Multi-breed), where the training set comprised specialized (Holstein and Brown Swiss) and dual-purpose (Simmental, Alpine Grey, and Rendena) dairy cows, combined with nine folds of the Holstein cows. Lastly a Multi-breed CV2 scenario was implemented, assuming the same number of records as the reference scenario and using the same proportions as the multi-breed. Within-Holstein, FTIR predictions had a predictive ability of 0.63 for BCS, 0.81 for BHB, and 0.80 for k-CN. Using a specific breed (Brown Swiss) as the training set for prediction in the Holstein population reduced the prediction accuracy by 10% for BCS, 7% for BHB, and 11% for k-CN. Notably, the combination of Holstein and Brown Swiss cows in the training set increased the predictive ability of the model by 6%, which was 0.66 for BCS, 0.85 for BHB, and 0.87 for k-CN. Using multiple specialized and dual-purpose animals in the training set outperforms the 10-fold_HO (standard) approach, with an increase in predictive ability of 8% for BCS, 7% for BHB, and 10% for k-CN. When the Multi-breed CV2 was implemented, no improvement was observed. Our findings suggest that FTIR prediction of different phenotypes in the Holstein breed can be improved by including different specialized and dual-purpose breeds in the training population. Our study also shows that predictive ability is enhanced when the size of the training population and the phenotypic variability are increased.

14.
Sci Rep ; 11(1): 16314, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381105

ABSTRACT

Metabolic disorders, including hepatic lipidosis and ketosis, severely affect animal health status and welfare with a large economic burden in dairy herds. The gold standard for diagnosing hepatic lipidosis is the liver biopsy, which is impractical and invasive for the screening at farm level. Ultrasound (US) imaging is a promising technique for identifying liver dysfunction, but standardized specifications in physiological conditions are needed. Herein, we described the features of four US measurements, namely the liver predicted triacylglycerol (pTAG) content, liver depth (LD), and portal vein area (PVA) and depth (PVD) and we investigated their associations with a set of hematochemical (HC) indicators in 342 clinically healthy Holstein Friesian dairy cows. Liver pTAG content was negatively associated with hematocrit and positively with globulin, whereas PVA was negatively associated with thiol group levels, and LD positively with ceruloplasmin. We found significant interactions between some HC parameters and parity: in particular, creatinine, thiol groups and globulin for PVA, and aspartate aminotransferase, paraoxonase and ceruloplasmin for PVD. This study offers new insights on variations in liver function occurring after calving and pave the way for the potential use of minimally invasive techniques for prompt detection of metabolic disorders in dairy herds.


Subject(s)
Liver/metabolism , Animals , Cattle , Cattle Diseases/metabolism , Lipidoses/metabolism , Metabolic Diseases/metabolism , Triglycerides/metabolism , Ultrasonography/methods
15.
Sci Rep ; 11(1): 13946, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230594

ABSTRACT

Spectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet-visible and near-infrared region (UV-Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV-Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV-Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.


Subject(s)
Genetic Variation , Meat/analysis , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared , Animals , Cattle , Inheritance Patterns/genetics , Phenotype
16.
J Dairy Sci ; 104(9): 10040-10048, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147228

ABSTRACT

Our study investigated the inbreeding load for fertility traits in the Italian Brown Swiss dairy cattle breed. Fertility traits included continuous traits (i.e., interval from calving to first service, days open, and calving interval) and categorical traits (i.e., calving rate at first insemination and nonreturn date at d 56). We included only records of the first 3 parities of cows that calved between 2010 and 2018. We traced up the pedigree of the cows with records as far as possible, ending up with a total of 73,246 animals. The final data set consisted of 59,864 records from 34,921 cows. We analyzed all models using a Bayesian approach that included a covariate with total inbreeding in addition to systematic, permanent environment, additive genetic, and inbreeding load effects. We then evaluated the trends in heritabilities and ratios of the inbreeding load using a continuum of partial inbreeding coefficients from 0.001 to 0.100 as reference. Posterior estimates of heritabilities tended to decrease across the continuum, whereas ratios of the inbreeding load tended to increase, more noticeably in categorical traits (calving rate at first insemination and nonreturn date at d 56). From the results obtained, we confirmed the presence of heterogeneity in inbreeding depression. We then predicted the inbreeding load effects, which had a low reliability of prediction, explained by having only 513 ancestors generating inbreeding. However, reliability of prediction was high enough for some of the individuals, obtaining a favorable prediction of inbreeding load for a relevant percentage, which improved the phenotypic performance of their inbred descendants. These results make it feasible to implement breeding and management strategies that select ancestors with a favorable inbreeding load prediction. In addition, it opens the possibility to define a global index for the expected consequences of the inbreeding generated by each individual.


Subject(s)
Inbreeding , Lactation , Animals , Bayes Theorem , Cattle/genetics , Female , Fertility/genetics , Reproducibility of Results
17.
J Dairy Sci ; 104(7): 8107-8121, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33865589

ABSTRACT

Fourier-transform infrared (FTIR) spectroscopy is a powerful high-throughput phenotyping tool for predicting traits that are expensive and difficult to measure in dairy cattle. Calibration equations are often developed using standard methods, such as partial least squares (PLS) regression. Methods that employ penalization, rank-reduction, and variable selection, as well as being able to model the nonlinear relations between phenotype and FTIR, might offer improvements in predictive ability and model robustness. This study aimed to compare the predictive ability of 2 machine learning methods, namely random forest (RF) and gradient boosting machine (GBM), and penalized regression against PLS regression for predicting 3 phenotypes differing in terms of biological meaning and relationships with milk composition (i.e., phenotypes measurable directly and not directly in milk, reflecting different biological processes which can be captured using milk spectra) in Holstein-Friesian cattle under 2 cross-validation scenarios. The data set comprised phenotypic information from 471 Holstein-Friesian cows, and 3 target phenotypes were evaluated: (1) body condition score (BCS), (2) blood ß-hydroxybutyrate (BHB, mmol/L), and (3) κ-casein expressed as a percentage of nitrogen (κ-CN, % N). The data set was split considering 2 cross-validation scenarios: samples-out random in which the population was randomly split into 10-folds (8-folds for training and 1-fold for validation and testing); and herd/date-out in which the population was randomly assigned to training (70% herd), validation (10%), and testing (20% herd) based on the herd and date in which the samples were collected. The random grid search was performed using the training subset for the hyperparameter optimization and the validation set was used for the generalization of prediction error. The trained model was then used to assess the final prediction in the testing subset. The grid search for penalized regression evidenced that the elastic net (EN) was the best regularization with increase in predictive ability of 5%. The performance of PLS (standard model) was compared against 2 machine learning techniques and penalized regression using 2 cross-validation scenarios. Machine learning methods showed a greater predictive ability for BCS (0.63 for GBM and 0.61 for RF), BHB (0.80 for GBM and 0.79 for RF), and κ-CN (0.81 for GBM and 0.80 for RF) in samples-out cross-validation. Considering a herd/date-out cross-validation these values were 0.58 (GBM and RF) for BCS, 0.73 (GBM and RF) for BHB, and 0.77 (GBM and RF) for κ-CN. The GBM model tended to outperform other methods in predictive ability around 4%, 1%, and 7% for EN, RF, and PLS, respectively. The prediction accuracies of the GBM and RF models were similar, and differed statistically from the PLS model in samples-out random cross-validation. Although, machine learning techniques outperformed PLS in herd/date-out cross-validation, no significant differences were observed in terms of predictive ability due to the large standard deviation observed for predictions. Overall, GBM achieved the highest accuracy of FTIR-based prediction of the different phenotypic traits across the cross-validation scenarios. These results indicate that GBM is a promising method for obtaining more accurate FTIR-based predictions for different phenotypes in dairy cattle.


Subject(s)
Machine Learning , Milk , 3-Hydroxybutyric Acid , Animals , Cattle , Female , Phenotype , Spectroscopy, Fourier Transform Infrared/veterinary
18.
Genet Sel Evol ; 53(1): 29, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726672

ABSTRACT

BACKGROUND: Over the past decade, Fourier transform infrared (FTIR) spectroscopy has been used to predict novel milk protein phenotypes. Genomic data might help predict these phenotypes when integrated with milk FTIR spectra. The objective of this study was to investigate prediction accuracy for milk protein phenotypes when heterogeneous on-farm, genomic, and pedigree data were integrated with the spectra. To this end, we used the records of 966 Italian Brown Swiss cows with milk FTIR spectra, on-farm information, medium-density genetic markers, and pedigree data. True and total whey protein, and five casein, and two whey protein traits were analyzed. Multiple kernel learning constructed from spectral and genomic (pedigree) relationship matrices and multilayer BayesB assigning separate priors for FTIR and markers were benchmarked against a baseline partial least squares (PLS) regression. Seven combinations of covariates were considered, and their predictive abilities were evaluated by repeated random sub-sampling and herd cross-validations (CV). RESULTS: Addition of the on-farm effects such as herd, days in milk, and parity to spectral data improved predictions as compared to those obtained using the spectra alone. Integrating genomics and/or the top three markers with a large effect further enhanced the predictions. Pedigree data also improved prediction, but to a lesser extent than genomic data. Multiple kernel learning and multilayer BayesB increased predictive performance, whereas PLS did not. Overall, multilayer BayesB provided better predictions than multiple kernel learning, and lower prediction performance was observed in herd CV compared to repeated random sub-sampling CV. CONCLUSIONS: Integration of genomic information with milk FTIR spectral can enhance milk protein trait predictions by 25% and 7% on average for repeated random sub-sampling and herd CV, respectively. Multiple kernel learning and multilayer BayesB outperformed PLS when used to integrate heterogeneous data for phenotypic predictions.


Subject(s)
Breeding/methods , Cattle/genetics , Genomics/methods , Milk Proteins/genetics , Animals , Milk Proteins/chemistry , Models, Genetic , Pedigree , Spectroscopy, Fourier Transform Infrared/methods
19.
J Dairy Sci ; 104(5): 5705-5718, 2021 May.
Article in English | MEDLINE | ID: mdl-33663837

ABSTRACT

The aims of this study were to investigate potential functional relationships among milk protein fractions in dairy cattle and to carry out a structural equation model (SEM) GWAS to provide a decomposition of total SNP effects into direct effects and effects mediated by traits that are upstream in a phenotypic network. To achieve these aims, we first fitted a mixed Bayesian multitrait genomic model to infer the genomic correlations among 6 milk nitrogen fractions [4 caseins (CN), namely κ-, ß-, αS1-, and αS2-CN, and 2 whey proteins, namely ß-lactoglobulin (ß-LG) and α-lactalbumin (α-LA)], in a population of 989 Italian Brown Swiss cows. Animals were genotyped with the Illumina BovineSNP50 Bead Chip v.2 (Illumina Inc.). A Bayesian network approach using the max-min hill-climbing (MMHC) algorithm was implemented to model the dependencies or independence among traits. Strong and negative genomic correlations were found between ß-CN and αS1-CN (-0.706) and between ß-CN and κ-CN (-0.735). The application of the MMHC algorithm revealed that κ-CN and ß-CN seemed to directly or indirectly influence all other milk protein fractions. By integrating multitrait model GWAS and SEM-GWAS, we identified a total of 127 significant SNP for κ-CN, 89 SNP for ß-CN, 30 SNP for αS1-CN, and 14 SNP for αS2-CN (mostly shared among CN and located on Bos taurus autosome 6) and 15 SNP for ß-LG (mostly located on Bos taurus autosome 11), whereas no SNP passed the significance threshold for α-LA. For the significant SNP, we assessed and quantified the contribution of direct and indirect paths to total marker effect. Pathway analyses confirmed that common regulatory mechanisms (e.g., energy metabolism and hormonal and neural signals) are involved in the control of milk protein synthesis and metabolism. The information acquired might be leveraged for setting up optimal management and selection strategies aimed at improving milk quality and technological characteristics in dairy cattle.


Subject(s)
Caseins , Milk Proteins , Animals , Bayes Theorem , Caseins/genetics , Cattle/genetics , Female , Genomics , Latent Class Analysis
20.
Front Genet ; 12: 746665, 2021.
Article in English | MEDLINE | ID: mdl-35058966

ABSTRACT

Knowledge of the genetic architecture of key growth and beef traits in livestock species has greatly improved worldwide thanks to genome-wide association studies (GWAS), which allow to link target phenotypes to Single Nucleotide Polymorphisms (SNPs) across the genome. Local dual-purpose breeds have rarely been the focus of such studies; recently, however, their value as a possible alternative to intensively farmed breeds has become clear, especially for their greater adaptability to environmental change and potential for survival in less productive areas. We performed single-step GWAS and post-GWAS analysis for body weight (BW), average daily gain (ADG), carcass fleshiness (CF) and dressing percentage (DP) in 1,690 individuals of local alpine cattle breed, Rendena. This breed is typical of alpine pastures, with a marked dual-purpose attitude and good genetic diversity. Moreover, we considered two of the target phenotypes (BW and ADG) at different times in the individuals' life, a potentially important aspect in the study of the traits' genetic architecture. We identified 8 significant and 47 suggestively associated SNPs, located in 14 autosomal chromosomes (BTA). Among the strongest signals, 3 significant and 16 suggestive SNPs were associated with ADG and were located on BTA10 (50-60 Mb), while the hotspot associated with CF and DP was on BTA18 (55-62 MB). Among the significant SNPs some were mapped within genes, such as SLC12A1, CGNL1, PRTG (ADG), LOC513941 (CF), NLRP2 (CF and DP), CDC155 (DP). Pathway analysis showed great diversity in the biological pathways linked to the different traits; several were associated with neurogenesis and synaptic transmission, but actin-related and transmembrane transport pathways were also represented. Time-stratification highlighted how the genetic architectures of the same traits were markedly different between different ages. The results from our GWAS of beef traits in Rendena led to the detection of a variety of genes both well-known and novel. We argue that our results show that expanding genomic research to local breeds can reveal hitherto undetected genetic architectures in livestock worldwide. This could greatly help efforts to map genomic complexity of the traits of interest and to make appropriate breeding decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...